AsciiMath
fixmath遵循 W3C 标准,公式基于AsciiMath的输入而非基于 TeX and LaTeX或 MathML;
图形遵循 B-spline(贝塞尔)曲线;
句法 Syntax
# | Type | See |
---|---|---|
1 | + | `+` |
2 | - | `-` |
3 | * | `*` |
4 | ** | `**` |
5 | *** | `***` |
6 | // | `//` |
# | Type | See |
---|---|---|
7 | \\ | `\\` |
8 | xx | `xx` |
9 | -: | `-:` |
10 | @ | `@` |
11 | o+ | `o+` |
12 | ox | `ox` |
# | Type | See |
---|---|---|
13 | o. | `o.` |
14 | sum | `sum` |
15 | prod | `prod` |
16 | ^^ | `^^` |
17 | ^^^ | `^^^` |
18 | vv | `vv` |
# | Type | See |
---|---|---|
19 | vvv | `vvv` |
20 | nn | `nn` |
21 | nnn | `nnn` |
22 | uu | `uu` |
23 | uuu | `uuu` |
# | Type | See |
---|---|---|
1 | int | `int` |
2 | oint | `oint` |
3 | del | `del` |
4 | grad | `grad` |
5 | +- | `+-` |
6 | O/ | `O/` |
# | Type | See |
---|---|---|
7 | oo | `oo` |
8 | aleph | `aleph` |
9 | /_ | `/_` |
10 | :. | `:.` |
11 | |...| | `|...|` |
12 | |cdots| | `|cdots|` |
13 | vdots | `vdots` |
# | Type | See |
---|---|---|
14 | ddots | `ddots` |
15 | |\ | | `|\ |` |
16 | |quad| | `|quad|` |
17 | diamond | `diamond` |
18 | square | `square` |
19 | |__ | `|__` |
20 | __| | `__|` |
# | Type | See |
---|---|---|
21 | |~ | `|~` |
22 | ~| | `~|` |
23 | CC | `CC` |
24 | NN | `NN` |
25 | `QQ` | |
26 | RR | `RR` |
27 | ZZ | `ZZ` |
# | Type | See |
---|---|---|
1 | = | `=` |
2 | != | `!=` |
3 | < | `<` |
4 | > | `>` |
5 | <= | `<=` |
6 | >= | `>=` |
7 | -< | `-<` |
8 | >- | `>-` |
# | Type | See |
---|---|---|
9 | in | `in` |
10 | !in | `!in` |
11 | sub | `sub` |
12 | sup | `sup` |
13 | sube | `sube` |
14 | supe | `supe` |
# | Type | See |
---|---|---|
15 | -= | `-=` |
16 | ~= | `~=` |
17 | ~~ | `~~` |
18 | prop | `prop` |
# | Type | See |
---|---|---|
1 | hat x | `hat x` |
2 | bar x | `bar x` |
3 | ul x | `ul x` |
4 | vec x | `vec x` |
5 | dot x | `dot x` |
6 | ddot x | `ddot x` |
Type# | See | Type | See |
---|---|---|---|
alpha | `alpha` | ||
beta | `beta` | ||
chi | `chi` | ||
delta | `delta` | Delta | `Delta` |
epsilon | `epsilon` | ||
varepsilon | `varepsilon` |
Type# | See | Type | See |
---|---|---|---|
eta | `eta` | ||
gamma | `gamma` | Gamma | `Gamma` |
iota | `iota` | ||
kappa | `kappa` | ||
lambda | `lambda` | Lambda | `Lambda` |
mu | `mu` | ||
nu | `nu` |
Type# | See | Type | See |
---|---|---|---|
omega | `omega` | Omega | `Omega` |
phi | `phi` | Phi | `Phi` |
varphi | `varphi` | ||
pi | `pi` | Pi | `Pi` |
psi | `psi` | Psi | `Psi` |
rho | `rho` | ||
sigma | `sigma` | Sigma | `Sigma` |
Type# | See | Type | See |
---|---|---|---|
tau | `tau` | ||
theta | `theta` | Theta | `Theta` |
vartheta | `vartheta` | ||
upsilon | `upsilon` | ||
xi | `xi` | Xi | `Xi` |
zeta | `zeta` |
# | Type | See |
---|---|---|
1 | and | `and` |
2 | or | `or` |
3 | not | `not` |
4 | => | `=>` |
5 | if | `if` |
6 | iff | `iff` |
# | Type | See |
---|---|---|
7 | AA | `AA` |
8 | EE | `EE` |
9 | _|_ | `_|_` |
10 | TT | `TT` |
11 | |-- | `|--` |
12 | |== | `|==` |
# | Type | See |
---|---|---|
1 | sin | `sin` |
2 | sin | `sin` |
3 | tan | `tan` |
4 | csc | `csc` |
5 | sec | `sec` |
6 | cot | `cot` |
# | Type | See |
---|---|---|
7 | sinh | `sinh` |
8 | cosh | `cosh` |
9 | tanh | `tanh` |
10 | log | `log` |
11 | ln | `ln` |
12 | det | `det` |
# | Type | See |
---|---|---|
13 | dim | `dim` |
14 | lim | `lim` |
15 | mod | `mod` |
16 | gcd | `gcd` |
17 | lcm | `lcm` |
18 | min | `min` |
19 | max | `max` |
# | Type | See |
---|---|---|
1 | ( | `(` |
2 | ) | `)` |
3 | [ | `[` |
4 | ] | `]` |
5 | { | `{` |
6 | } | `}` |
7 | (: | `(:` |
8 | :) | `:)` |
9 | {: | `{:` |
10 | :} | `:}` |
# | Type | See |
---|---|---|
1 | uarr | `uarr` |
2 | darr | `darr` |
3 | rarr | `rarr` |
4 | -> | `->` |
5 | |-> | `|->` |
6 | larr | `larr` |
7 | harr | `harr` |
8 | rArr | `rArr` |
9 | lArr | `lArr` |
10 | hArr | `hArr` |
# | Type | See |
---|---|---|
1 | bb "AaBbCc" | `bb "AaBbCc"` |
2 | bbb "AaBbCc" | `bbb "AaBbCc"` |
3 | cc "AaBbCc" | `cc "AaBbCc"` |
4 | tt "AaBbCc" | `tt "AaBbCc"` |
5 | fr "AaBbCc" | `fr "AaBbCc"` |
6 | sf "AaBbCc" | `sf "AaBbCc"` |
# | Type | See |
---|---|---|
矩阵 | [[a,b],[c,d]] | `[[a,b],[c,d]]` |
列向量 | ((a,b),(c,d)) | `((a,b),(c,d))` |
复杂的下标 | lim_(x->oo) | `lim_(x->oo)` |
下标在前 | int_0^1 f(x)dx | `int_0^1 f(x)dx` |
Always try to surround the > and < characters with spaces so that the html parser does not confuse it with an opening or closing tag! | ||
Example | f(t)=(a_0)/2 + sum_(n=1)^ooa_ncos((npit)/L)+sum_(n=1)^oo b_nsin((npit)/L) | `f(t)=(a_0)/2 + sum_(n=1)^ooa_ncos((npit)/L)+sum_(n=1)^oo b_n\ sin((npit)/L)` |
ax^2+bx+c=0 | `ax^2+bx+c=0` | |
x^2+b/ax+c/a=0 | `x^2+b/ax+c/a=0` | |
x^2+b/ax+(b/(2a))^2-(b/(2a))^2+c/a=0 | `x^2+b/ax+(b/(2a))^2-(b/(2a))^2+c/a=0` | |
(x+b/(2a))^2=(b^2)/(4a^2)-c/a | `(x+b/(2a))^2=(b^2)/(4a^2)-c/a` | |
x+b/(2a)=+-sqrt((b^2)/(4a^2)-c/a) | `x+b/(2a)=+-sqrt((b^2)/(4a^2)-c/a)` | |
x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a) | `x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)` | |
x^2+y_1+z_12^34 | `x^2+y_1+z_12^34` | |
sin^-1(x) | `sin^-1(x)` | |
d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h | `d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h` | |
f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n | `f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n` | |
[[a,b],[c,d]]((n),(k)) | `[[a,b],[c,d]]((n),(k))` | |
x/x={(1,if x!=0),(text{undefined},if x=0):} | `x/x={(1,if x!=0),(text{undefined},if x=0):}` | |
在同一行显示分式的表示法 | a//b | `a//b` |
括号的使用 | (a/b)/(c/d) | `(a/b)/(c/d)` |
a/b/c/d | `a/b/c/d` | |
((a*b))/c | `((a*b))/c` | |
sqrtsqrtroot3x | `sqrtsqrtroot3x` | |
(:a,b:) and x lt y lt 1 | `(:a,b:) and x lt y lt 1` | |
尖括号及不可见括号 | (:a,b:) and {:(x,y),(u,v):} | `(:a,b:) and {:(x,y),(u,v):}` |
(a,b]={x in RR : a < x <=b } | `(a,b]={x in RR : a < x <=b }` | |
abc-123.45^-1.1 | `abc-123.45^-1.1` | |
hat(ab) bar(xy) ulA vec v dotx ddot y | `hat(ab) bar(xy) ulA vec v dotx ddot y` | |
bb{AB3}.bbb(AB].cc(AB).fr{AB}.tt[AB].sf(AB) | `bb{AB3}.bbb(AB].cc(AB).fr{AB}.tt[AB].sf(AB)` | |
{(S_(11),...,S_(1n)),(vdots,ddots,vdots),(S_(m1),...,S_(mn))] | `{(S_(11),...,S_(1n)),(vdots,ddots,vdots),(S_(m1),...,S_(mn))]` | |
Chemistry | stackrel"加热"= or stackrel{Delta}{=}" "("or ":=) | `stackrel"加热"= or stackrel{Delta}{=}" "("or ":=)` |
前置性的上/下标,要加上不可见的括号 | {::}_(92)^(238)U | `{::}_(92)^(238)U` |
语法 The Grammar
这是一个用来解析AsciiMath表达式语法定义,在如下给出的 巴科斯(Backus-Naur)范式中, ::= 左边的字母代表一个符号类别,它是右边列出的符号可能序列之一;竖线 | 交替区分;
End
Create By Mr.Lu 2017-5-13 22:36